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Abstract

A dynamic analysis and numerical simulation has been conducted of a polysaccharides molecular structure (a ten

(10) single-a-DD-glucose molecule chain) connected to a moving atomic force microscope (AFM). Sinusoidal base exci-

tation of the AFM cantilevered beam is considered. First a linearized perturbation model is constructed for the complex

polysaccharides molecular structure. Then reduced order (dynamic) models based upon a proper orthogonal decompo-

sition (POD) technique are constructed using global modes for both the linearized perturbation model and for the full

nonlinear model. The agreement between the original and reduced order models (ROM/POD) is very good even when

only a few global modes are included in the ROM for either the linear case or for the nonlinear case. The computational

advantage of the reduced order model is clear from the results presented.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Polymeric molecules based on pyranose rings form a wide variety of polysaccharide. Three important

polysaccharide, all of which are polymers of DD-glucose, are starch, glycogen and cellulose. Physical meas-

urements show that amylose typically consists of more than 1000 DD-glucopyranoside units connected in a
linkages between C-1 of one unit and C-4 of the next that forms a chain structure with branched or un-

branched polymer. After reaching static equilibrium, all monomers of the polymer remained in a chair-like

conformation. For the polymeric molecules, a molecular dynamic analysis becomes very complex. The
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CHARMM [1] and X-PLOR [2] computational codes are used in a wide range of molecular dynamic anal-

yses including static structure and energy analysis, as well as structure and energy comparisons, time series,

correlation functions and statistical properties of molecular dynamic trajectories. These programs were

originally developed for serial computers. Simulation of large molecules, however, requires enormous com-

puting power. In recent years, the NAMD [3] and EGO [4] computational codes were designed to run effi-
ciently on a parallel computers for simulating large molecules. The computational time and cost still are

very considerable. These programs are widely used to calculate the free potential energy and conformation

of these molecules. However, these are not usually applied to calculate the dynamic response when the mol-

ecules are attached to an AFM and the probe base of the AFM cantilevered beam has a ramp or a har-

monic motion excitation. Even so, excitation conditions such as these may be used in future molecular

dynamic experiments.

Ref. [5] describes simulation studies of a single-a-DD-glucose molecule attached to an atomic force micro-

scope (AFM) and consider the dynamical behavior of a harmonically forced system. In this molecular
model, the force field includes general internal bonded forces, and non-bonded interaction forces, and a

linear attachment force created by the AFM cantilevered beam. The fundamental static force-extension

behavior was determined using a slow pulling base excitation at the AFM probe. The static force-extension

curve displays a stiffness nonlinearity, both softening and hardening, that depends upon the level of the

pulling force. For the dynamic analysis, a single harmonic base excitation is applied to the AFM probe.

A typical evolution process from periodic to aperiodic or chaotic motion for varying the excitation fre-

quency and amplitude is discussed. A strong chaotic response motion was generated for certain excitations.

The numerical analysis shows this chaotic response arises from a molecular structure conformational
change. Such an analysis may be useful in applications, for instance, in guaranteeing a regular motion

by changing the AFM operational conditions, or in control design, where the objective is to stabilize the

system on a chaotic or non-chaotic trajectory.

Following [5], in this work the molecular model is extended to a polysaccharide molecule consisting of

many pyranose rings. Thus, the large number of degrees of freedom and the long computational time re-

quired for the molecular dynamics will be significant barriers to both efficient computation and increased

understanding of the relevant phenomena. Two approaches are considered here to address this difficulty:

one is a small dynamic perturbation analysis about a nonlinear static equilibrium, i.e., linearizing the non-
linear system; another is the construction of reduced order models for the linear or nonlinear system. As

described in [6–12], such reduced order models offer the possibility of reducing computational model size

and cost by several orders of magnitude. For the construction of reduced order model, a proper orthogonal

decomposition (POD) technique is used. Briefly stated, the objective of the POD procedure is to find modes

which maximize the average projection of the polysaccharide molecule model variables onto these modes.

This procedure leads to an eigenvalue problem to determine the POD modes. Once the POD modes are

found, a reduced order dynamic model for the complex molecular structure (linear and nonlinear) is con-

structed. For comparison, a reduced order dynamic approach based upon the modal theory described in
[8,9] is also applied to the linearized perturbation equations and full nonlinear equations. Thus, the present

paper provides a new computational approach for the nonlinear multi-molecule dynamics of the polysac-

charide polymers.
2. Model description

The diastereomeric polysaccharides b-DD-glucopyranose (cellulose) and a-DD-glucopyranose (amylose) are
very common carbohydrates. Their monosaccharide ring is six-membered (pyranose). There are five carbon

atoms and one oxygen atom on the ring. The structure for a single polysaccharide has six (6) carbon atoms,

six (6) oxygen atoms and twelve (12) hydrogen atoms. There are 72 degrees of freedom of a a or b-DD-gluco-
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pyranose for the usual molecular dynamic analysis (nonlinear dynamics). When two or more glucopyra-

noses make contact, the hydroxyl groups at (OH)4, are ideally situated to ‘‘zip’’ the amylose chains together

by forming hydrogen bonds. Zipping many amylose chains together in this way gives a very large polymer.

If a polymeric molecule consists of N single polysaccharide as shown in Fig. 1, the total number of atoms is

21 · N + 3 including 6 · N carbon atoms, 5 · N + 1 oxygen atoms and 10 · N + 2 hydrogen atoms.
Here, we consider a nanoscale imaging measurement system with a very large polymer. The oxygen

atom, O4, is fixed at the bottom of the AFM. The tip of the AFM cantilevered beam interacts with surface

through a surface–tip interaction potential between the oxygen atom, O1, and a covered tip material (gold).

An external force (base excitation) is exerted on the AFM probe base through a prescribed based excitation,

B(t). One excitation considered here is a sinusoidal excitation, B(t), at the base of the cantilevered beam of

the atomic force microscope. A schematic diagram of the amylose molecular model with AFM measure-

ment system is shown in Fig. 2. The total number of atoms is 21 · N, and there are 3 · 21 · N degrees

of freedom in the molecular system taking into account the boundary constrained conditions.
Several potential surfaces for pyranose sugars have been proposed for use in conformational energy

studies. One developed by Brady and co-workers [13] is perhaps the best suited for carbohydrate molecule

dynamics. The potential energy functions used in the present studies are
Fig
UT ¼ Es þ Eh þ E/ þ Evdw þ Eel; ð1Þ

where Es + Eh + E/ are the bonded energy terms and Evdw + Eel are the non-bonded interaction energy

terms. For the bonded energy terms, the total bond stretch potential is expressed as
Es ¼
1

2

X
krðr � r0Þ2
and the total bonded bending angle potential is
Eh ¼
1

2

X
khðh� h0Þ2
and the total dihedral angle (torsion) potential is
E/ ¼
X

k/½1þ cosðn/� dÞ�;
. 1. Schematic diagram of the molecular structure of amylose with N-glucose residues linked by a-DD-1,4-glucosidic bonds.



Fig. 2. Schematic diagram of the amylose molecular with AFM measurement system.
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where bond length, r, bending angle h, and torsional angle, / represent the internal coordinates in a Car-

tesian coordinate system. r0 are the equilibrium bond-lengths and h0 are the equilibrium bond-angles, n is a

periodicity number, n = 1,2,3, . . .,d is a phase factor. kr, kh and k/ are the force constants.

For the non-bonded interaction energy terms, the total van der Waals interaction energy is expressed as
Evdw ¼
X

exclði;jÞ¼1

Aij

r12ij
� Bij

r6ij

 !
;

where Aij, Bij are the van der Waals force parameters for each pair of atoms.

The total electrostatic potential energy is
Eel ¼
X

exclði;jÞ¼1

Kcoul

qiqj
�rij

;

where rij is the interatomic separation between atoms i and j, qi, qj are atomic partial charges. � is dielectric
constant. � = 1 in vacuo. Kcoul is the conversion factor given as
Kcoul ¼ 332
kcal

mol

Å

esu2
:

The bending force associated with the bending angle, hijk, and the force associated with dihedral (torsional)

angle, /ijkl are defined in terms of the relative coordinates of four consecutive atoms, here for convenience

labeled, i, j, k and l. Bond a joins atoms i and j, and is denoted by the vector
a ¼ rj � ri;
where rj and ri are the vector coordinates of atoms i and j. Similar results hold for the vectors b and c.

The bending angle, hijk, between bonds a and b is given by
cos hijk ¼
a � b

jaj � jbj ;
where hijk = p when the bonds are parallel.
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The dihedral angle, /ijkl, associated with bond b is obtained from
cos/ijkl ¼
ða� bÞ � ðb� cÞ
ja� bjjb� cj ¼ nab � nbc

jnabjjnbcj
;

where the vector products are nab = a · b and nbc = b · c.

For details of the angles, hijk and /ijkl, see Appendix A.

2.1. Nonlinear dynamic equations of motion

Using the expressions for kinetic and potential energy and the virtual work in Lagrange�s equations for
the system, the equations of motion are given as follows.
mj€rj þrjðUT Þ ¼ 0; j ¼ 2; 3; . . . ; n; and j 6¼ k;

mk€xk þ oUT
oxk

� ksðBðtÞ � xkÞ ¼ 0;

mk€yk þ oUT
oyk

þ kyyk ¼ 0;

mk€zk þ oUT
ozk

þ kzzk ¼ 0;

8>>>><
>>>>:

ð2Þ
where mj and mk are the particle masses at the j and k positions of the molecule, the vector rj is
rj ¼ xj~iþ yj~jþ zj~k
and kx, ky, kz are the x-, y- and z-direction stiffnesses of the cantilevered beam. xk, yk, zk are the coordinates

of the oxygen atom, O1, that is attached to the tip of the AFM cantilevered beam. Note that ky,

kz = k1 � ks.

Now {q} = {x1,x2, . . .,xR,y1,y2, . . .,yR,z1,z2, . . .,zR}, where R is the total number of atoms. As shown in

Fig. 1, if the large polymer has N single a-DD-glucopyranose, then R = 21*N + 3. When {q} is substituted
into Eq. (2), one obtains
mj€qj ¼ fj; j ¼ 1; 2; 3; . . . ; 3R� 1 and j 6¼ k;Rþ k; 2Rþ k;

mk€qk ¼ fk þ ksðBðtÞ � qkÞ;
mk€qRþk ¼ fRþk � k1qRþk;

mk€q2Rþk ¼ f2Rþk � k1q2Rþk;

8>>><
>>>:
where qk ” xk and fj ” � $j(UT) are the nonlinear forces determined by the bonded and non-bonded poten-

tial energies. fk is the nonlinear force acting at the kth atom in the x-direction. For more detailed informa-

tion on the nonlinear forces fj, see Appendix A.

A compact matrix equation to determine q can be expressed as,
½M �f€qg þ fF Ng þ fF eg ¼ fksBðtÞdði� kÞg; ð3Þ

where [M] is a diagonal matrix of the atomic mass, {Fe} = {ksqkd(i � k), k1qR + kd(i � R � k),

k1q2R + kd(i � 2R � k)} and d is a Delta function, for example, d(i � k) ” 0 when i 6¼ k and d(i � k) = 1

when i = k.

For the present model, a viscous (hydrodynamic) damping force, {fviscous}, is added to Eq. (3) that is

assumed to be of the form
ffviscousg ¼ 2nmix1f _qig;

where x1 is the fundamental natural frequency and f _qig ¼ f _xi; _yi; _zig

T
. The basic modal damping ratio is

taken to be n = 0.02. The damping matrix is approximately expressed as
½C� ¼ 2nx1½M �:
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Finally, a compact matrix equation to determine q can be expressed as,
½M �f€qg þ ½C�f _qg þ fF Ng þ fF eg ¼ fksBðtÞdði� kÞg: ð4Þ
2.2. Linear equations for small dynamic perturbations

Based on the nonlinear dynamic equations of motion, a linearized equation for small dynamic perturba-

tions about the static equilibrium positions or confirmation is considered. Let
fqg ¼ fqsg þ fq̂g; ð5Þ

where qs is the static equilibrium positions and q̂ is a small dynamic response.

The static equilibrium positions, qs, is determined by
fF Ng þ fF eg � 0:
Substituting Eq. (5) into Eq. (4) and using a Taylor Series for the nonlinear forces, the linear dynamic per-

turbation equations for the small motions about the static equilibrium positions are given by
½M �f€̂qg þ ½C�f _̂qg þ ½�Kij�fq̂g ¼ fksBðtÞdði� kÞg; ð6Þ
where ½�Kij� is a Jacobian matrix about the static equilibrium positions, and the linearized stiffness element
�Kij is given by
�Kij ¼
ofj
oqi

����
qs

:

For detailed information about the stiffness elements, �Kij, in the Jacobian matrix, see Appendix A.
3. POD reduced order modeling

The use of POD to find the polysaccharide molecular structure model is an new approach to molecular

dynamic modeling per se, but it has been used successfully for other complex, nonlinear dynamical systems.
Below is a brief overview of how the POD methodology works and how it has been applied by the authors

in order to determine if this method has any advantages in comparison to the already well established meth-

ods for the full polysaccharide molecular model.

As described in [12], the use of the POD technique to compute reduced order models in both fluid flow

modeling and aeroelastic system modeling is well documented. The objective of the POD procedure is to

find global modes which maximize the average projection of the polysaccharide molecule model variables

onto these modes. Once the POD modes are found, a reduced order dynamic model for the complex molec-

ular structure (linear and nonlinear) is constructed, using the most significant of these modes. Below the
procedure that is used to find these modes is outlined.

The data used to form the POD eigenvalue problem is taken from representative time histories of the

displacement degrees of freedom, q. First one must compute snapshots in time of the full molecular model

and put these into a data matrix Q as
½Q�NN�J ¼
q1ð1Þ � � � q1ðjÞ � � � q1ðJÞ
..
. ..

. ..
. ..

. ..
.

qNN ð1Þ � � � qnðjÞ � � � qNN ðJÞ

2
664

3
775; j ¼ 1; 2; . . . ; J ; n ¼ 1; 2; . . . ;NN ; ð7Þ
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where qn(j) is the jth snapshot in time of the nth atom motion of the cellulose molecular model, J is the

number snapshots and NN is the number of total degrees of freedom of the molecular model.

There is a choice between computing the singular value decomposition of Q or QT for finding the POD

modes which depends on the relative size of NN and J. In the field of principal component analysis, the first

method is called the R-method and second the Q-method [14]. The modal vectors produced by the two
methods can be shown to differ only by a constant scaling matrix.

If NN � J, the Q-method is selected:

Thus, we construct the singular value decomposition of Q
½Q� ¼ ½U �½R�½V �T; ð8Þ

where U is a unitary matrix of dimension NN · n and V is also a unitary matrix of dimension J · n. One

may select n and typically n will be less than J. Note that
½U �T½U � ¼ ½I �n�n; ½V �T½V � ¼ ½I �n�n ð9Þ

and R is a diagonal matrix of singular values, i.e.
R½ �n�n ¼

r1

r2

. .
.

rn

2
66664

3
77775: ð10Þ
Now order these singular values such that
r1 P r2 P � � � P rn ð11Þ

and then form U, the correlation matrix for the POD method.
½U� � ½Q�T½Q� ¼ ½V �½R�T½U �T½U �½R�½V �T ¼ ½V �½R�T½R�½V �T: ð12Þ

Eq. (12) implies that V is the eigenvector of the correlation matrix and the corresponding eigenvalues are

the squares of the singular values.
From (8), one may compute (assuming that V is normalized so that the magnitude of each eigenvector is

unity)
½Q�½V � ¼ ½U �½R�½V �T½V � ¼ ½U �½R�: ð13Þ

One may also compute U from Eq. (13) and further one may compute Q from a knowledge of U, V and the

singular values using Eq. (8). Usually, it is easier to compute Q directly from Eq. (7). However, the repre-

sentation of Eq. (8) may be useful if one chooses to decompose Q such that
½Q� ¼ ð½U �½R�1=2Þð½R�1=2½V �TÞ: ð14Þ

With this decomposition the POD modes are said to be ‘‘balanced’’ and these are often put forth as an opti-

mum choice for mode selection.

If there is a truncation in the singular values, i.e., one chooses n to be less than J which is much less than

NN, then Eq. (8) may be written in a reduced form. The corresponding reduced form for Q approaches the
original Q if the neglected singular values or POD eigenvalues are sufficiently small compared to those

retained.

If NN < J, the R-method is selected:

Thus we construct the singular value decomposition of QT
½QT� ¼ ½V �½R�½U �T ð15Þ
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therefore
½U� � ½Q�½Q�T ¼ ½U �½R�T½V �T½V �½R�½U �T ð16Þ

and if V is normalized such that VTV = I then
½U� ¼ ½U �½R�T½R�½U �T ð17Þ

and U is the eigenvector of the matrix [U].

Particularly as the number of atoms or molecules becomes large, there is a need to construct reduced

order models to increase computational efficiency and conceptual understanding. Two cases will be dis-
cussed here. For one, the reduced order model is based on the small perturbation linear model, i.e., Eq.

(6). For the second, the reduced order model is based on the nonlinear model, i.e., Eq. (4).

It is well known that the success of the POD methodology depends upon the choice of the excitation used

to obtain the snapshots. Our approach has been to assure that the excitation has a rich enough frequency

and spatial content to excite the dominant eigenmodes of the system. When the eigenmodes are not known

a priori, a certain amount of numerical experimentation may be required to determine an effective excita-

tion to determine the snapshots. In the present paper, the choices made were based on some physical insight

into the dynamics of the system and seem to have worked well.

3.1. POD reduced order model based on the linearized, small perturbation equations

First consider POD reduced order modeling based on the linearized perturbation equations, Eq. (6). The

data matrix Q̂ is
Q̂
� �

NN�J
¼

q̂1ð1Þ � � � q̂1ðjÞ � � � q̂1ðJÞ
..
. ..

. ..
. ..

. ..
.

q̂NN ð1Þ . . . q̂nðjÞ � � � q̂NN ðJÞ

2
664

3
775; j ¼ 1; 2; . . . ; J ; n ¼ 1; 2; . . . ;NN : ð18Þ
Transformation from Original Coordinates, q̂, to POD Modal Coordinates, â:

Denoting V as the eigenvector matrix for the correlation matrix of dimension J · n, noting that Q̂ is a

matrix of NN · J, and defining, â(t), as the new unknowns to be determined which are the n modal ampli-

tudes of the POD modes, then one may write the original variables, q̂ðtÞ, as
fq̂ðtÞgNN�1 ¼ ½Q̂�N�J ½V �J�nfâðtÞgn�1: ð19Þ

From Eq. (8), we can determine the unitary matrix U,
½U � ¼ ½Q̂�½V �½R��1 ð20Þ

with a normalization such that [U]T[U] = [I].

Using Eq. (13), one obtains
fq̂ðtÞgNN�1 ¼ ½U �NN�n½R�n�nfâðtÞgn�1: ð21Þ

Substituting Eq. (21) into Eq. (6), we have
½U �½R�f €âðtÞg þ ½M ��1½C�½U �½R�f _âðtÞg þ ½M ��1½�Kij�½U �½R�fâðtÞg ¼ ½M ��1fksBðtÞdikg: ð22Þ

Pre-multiplying by the transpose of [U][R] gives a reduced order model in terms of the new unknowns,

{â(t)}.
f €âðtÞg þ ½R�f _âðtÞg þ ½P �fâðtÞg ¼ ksBðtÞfW g; ð23Þ

where
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½R� ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1½C�½U �½R� ¼ 2nx1½I �;

½P � ¼ ð½R�T½R�Þ�1ð½U �½R�ÞT½M ��1½�Kij�½U �½R�;

fW g ¼ ½M ��1ð½U �½R�ÞTfdikg:
Generally, n � NN, and thus a reduced order model is obtained.

Once {â(t)} is determined from Eq. (23), fq̂ðtÞg can be determined from Eq. (21).

As described in [8,9], a quasi-static correction for the linear reduced order model provides a very effective
method to reduce the number of (POD) modes that need to be retained for a given level of accuracy. To

that end, let
fq̂g ¼ fq̂Qsg þ f^̂qg; ð24Þ
where q̂Qs is the quasi-static response and ^̂q is an additional small dynamic response. The quasi-static re-

sponse is defined to be that when the inertia terms, €̂q and damping terms, _̂q, are neglected. From Eqs.
(6) and (24), we thus have
fq̂Qsg ¼ ½�Kij��1fksBðtÞdði� kÞg ð25Þ
and
½M �f€̂q̂g þ ½C�f _̂q̂g þ ½�Kij�f^̂qg ¼ �½M �f€̂qQsg � ½C�f _̂qQsg: ð26Þ
Using the same procedure as before, the final governing equations for the linear reduced order dynamic

model with a quasi-static correction are given by
f€̂ag þ ½R�f _̂ag þ ½P �fâg ¼ �fFg; ð27Þ
where fFg is a linear force matrix that depends upon the quasi-static response of q̂Qs.

3.2. POD reduced order model based on the nonlinear equations

Now consider the construction of a POD reduced order model for a nonlinear model based on Eq. (4).

Unfortunately, one cannot directly use Eq. (4) to determine a set of reduced order model equations analyt-

ically. However [8,9] provides an effective dynamic computational approach for construction of the fully

nonlinear reduced order model based upon a linearized dynamic response correction (LDRC). This idea

is now used in the present analysis.

In this method, it is assumed that
fqg ¼ fqlinearg þ fDqg; ð28Þ

where qlinear is the linearized static and dynamic response obtained from the linear reduced order model

with a quasi-static correction, see Eq. (25), or using the solution of the small dynamic perturbation equa-

tion, see Eq. (6). Also it can be obtained from the linear modal theory and corresponding linear reduced

order model as described in [8,9]
fqlinearg � fqsg þ fq̂Qsg þ f^̂qg;
where qs; q̂Qs;
^̂q are the static equilibrium position, the quasi-static response and small dynamic response in

the linearized system. Note however that Dq is a (not necessarily small) dynamic response difference relative

to the linearized dynamic response. It is defined by
Dq � q� qlinear:
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Substituting Eq. (28) into Eq. (4) and using Eqs. (25) and (26), one obtains a nonlinear equation in matrix

form
½M �Df€qg þ ½C�fD _qg þ fDF eg þ fF Ng ¼ f�F linearg; ð29Þ

where {DFe} = {ks(Dq, 0,0, . . .)} and the linearized force matrix, fF linearg, is defined by
fF linearg ¼ ½Kij�fðq̂Qs þ ^̂qÞg � fF esg;
where {Fes} = {ksqlinear, 0,0, . . .}.
Now we construct a POD reduced order dynamic model based on Eq. (29). The procedure is the same as

before but the data matrix Q is obtained from Eq. (29).
Q½ �NN�J ¼
Dq1ð1Þ � � � Dq1ðjÞ � � � Dq1ðJÞ

..

. ..
. ..

. ..
. ..

.

DqNN ð1Þ � � � DqnðjÞ � � � DqNN ðJÞ

2
664

3
775; j ¼ 1; 2; . . . ; J ; n ¼ 1; 2; . . . ;NN : ð30Þ
The final governing equations for the nonlinear reduced order dynamic model based on the linearized dy-

namic response correction are given by
f €aðtÞg þ ½R�f _aðtÞg þ ½j�faðtÞg þ ½p�fF Ng ¼ fCg; ð31Þ

where [p] is the POD transformation matrix, [p] = ([R]T[R]) � 1([U][R])T[M] � 1 and {C} is the reduced linear

force matrix, fCg ¼ ½p�fF linearg. [j] is a force matrix due to the stiffness, ks, of the cantilevered beam of

AFM, [j] = [p]{DFe}([U][R]).
Once {a(t)} is determined from Eq. (31), {q(t)} can be determined from Eq. (28). Note that when running

the time integration of Eq. (31), one must calculate Eq. (28) using the relationship between the original

coordinates, q, and POD modal coordinates, a, at each time step and then determine the nonlinear force

vector, {FN}.
4. Numerical results

As a numerical example consider an amylose molecular chain with 10 single glucopyranose molecules.

The prescribed rotation angle at the root of the AFM probe is zero, i.e., motion of the tip probe of the

AFM is only allowed in the x-direction (the usual experimental environment). The stiffness of the flexible

AFM cantilevered beam is chosen to be ks = 10 pN/A. For the dynamic base excitation, we assume that

the AFM probe base is excited by a single harmonic motion, B(t) = A0 sinxt, where A0 and x are the exci-

tation amplitude and frequency.

In this system, there are 60 carbon atoms, 51 oxygen atoms (the last oxygen atom is fixed on the bottom

of the AFM and the first oxygen atom is attached to the AFM probe) and 100 hydrogen atoms. The total
number of atoms is 210 with 630 degrees of freedom. The periodicity number, n, and the phase factor, d in

the torsional energy, are taken to be n = 1, 3 and d = 0. The system parameters include inertia, bonded and

non-bonded force parameters. The bonded force parameters include the stretching, Kr, r0, bending Kh, h0
and torsional stiffnesses, K/. The inertia force parameters are the atomic masses, mi. The non-bonded force

parameters are the partial charge of the electrostatic interaction and the van der Waals force coefficients.

These parameters are the same as those studied in [13]. It is noted that for the van der Waals parameters, Aij

and Bij, can be represented by the parameters r and e:
Aij ¼ 4r12e; Bij ¼ 4r6e;
r and e are related to the well depth Emin and the minimum distance Rmin that are given in [1]
Rmin ¼ 1:1218r; Emin ¼ �e:
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Between two different atom types, the following combination rule is used:
Fig. 3.

measu
rij ¼
rii þ rjj

2
; eij ¼

ffiffiffiffiffiffiffiffiffi
eiiejj

p
:

The numerical results are discussed in two parts. One is the linear result obtained from the reduced order

dynamic model (ROM) based on the linearized perturbation equations, Eq. (6). Another is the nonlinear

result obtained from the ROM based on the nonlinear equations, Eq. (4). For comparison of their compu-

tational efficiency, two ROM approaches are used for both the linear and nonlinear systems. One is based

on the normal modal theory (NMT) that we call ROM/NMT which is described in Ref.[9]. The other is

based on the present POD method that we call ROM/POD.

4.1. Linear results obtained from ROM/NMT

Before solving the linearized perturbation equations, Eq. (6), one needs to know the static equilibrium

positions. The static equilibrium calculation uses a time simulation of the original nonlinear equations, i.e.,

Eq. (4), and a large damping ratio, n = 0.1 in order to reduce the computational time. The static equilibrium

positions are determined after a transient response when a steady-state equilibrium is reached. The confor-

mation or static equilibrium state for an amylose molecular is shown in Fig. 3. The red balls indicate the

oxygen atoms, the black balls indicate the carbon atoms and the others are the hydrogen atoms. The top
Conformation or static equilibrium state for an amylose molecular with 10 glucopyranoside units attached to an AFM

rement system.
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oxygen atom is attached to the AFM cantilever tip and the bottom oxygen atom is adhered to the substrate

of the AFM.

The eigenvalues and eigenvectors for this conformation are computed using the perturbation equations,

Eq. (6), when the external excitation is removed, B(s) = 0. The first 30 eigenvalues are shown in Table 1.

In the present dynamic analysis, we assume that the AFM probe base is excited by a single harmonic
motion along the x-direction, B(t) = A0 sinxt, where A0 and x are the excitation amplitude and frequency.

A0 is taken to be 1 Å. Two typical excitation frequencies are considered. These are x = 0.15 PHz, x = 1.056

PHz. The first is between the third and fourth natural frequencies x3 and x4 (but well separated from x3

and x4). The second is equal to the 18th natural frequency, x18.

All calculations use a Runge–Kutta (fourth) algorithm with a time step of Dt = 0.001 ps.

Fig. 4 shows a typical dynamic response of the rms deflection magnitude of each carbon atoms (a) and

oxygen atoms (b) of the amylose chain using the ROM/NMT approach with quasi-static correction and, for

reference, the response determined from the original linear equations, i.e., using all (630) eigenmodes for
x = 0.15 PHz. The rms magnitude of each carbon and oxygen atoms is defined by
Table

Eigenv

x1–10

0.7349

0.9610

0.9995

0.2007

0.2075

0.2340

0.3094

0.3740

0.4489

0.5021
si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i;rms þ y2i;rms þ z2i;rms

q
:

The agreement between the original and reduced order model using ten (10) modes is very good and rea-

sonably good when only eight (8) modes is included. However the agreement deteriorates when less than

five (5) modes are included.

Fig. 5 shows the results for x = 1.056 PHz. The agreement is very good when only the resonant mode

(x = x18) is included. When only the first seventeen (17) model are included, the agreement is very poor

(not shown in Fig. 5). This latter result is a consequence of choosing the excitation frequency precisely equal

to the natural frequency, x18.
Fig. 6 shows the time histories of the sixth oxygen atom (the connecting point between the first and sec-

ond polysaccharide molecule) for this resonant mode excitation. The solid line indicates the results from the

original equation and the circle points indicates the results from the ROM/NMT with only the resonant

mode. The agreement is excellent.

One can define a total rms error, err, as follows:
err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

210

X210
i¼1

si;All � si;Reduced

si;All

� �2

vuut
0
@

1
A%
1

alues, xn PHz

x11–20 x21–30

3E � 02 0.51468E + 00 0.12503E + 01

0E � 01 0.57476E + 00 0.13172E + 01

0E � 01 0.67322E + 00 0.14096E + 01

7E + 00 0.70948E + 00 0.15645E + 01

0E + 00 0.82654E + 00 0.17113E + 01

7E + 00 0.86737E + 00 0.17519E + 01

9E + 00 0.94511E + 00 0.18648E + 01

6E + 00 0.10565E + 01 0.20130E + 01

1E + 00 0.11012E + 01 0.20291E + 01

3E + 00 0.11878E + 01 0.20810E + 01



(a) (b)

Fig. 4. Dynamic responses of the amylose chain for A0 = 1 Å, x = 0.15 PHz: (a) Rms magnitude of each carbon atom and (b) Rms

magnitude of each oxygen atom.

(a) (b)

Fig. 5. Dynamic responses of the amylose chain for A0 = 1 Å, x = 1.056 PHz: (a) Rms magnitude of each carbon atom and (b) Rms

magnitude of each oxygen atom.
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where si,All is the rms magnitude of ith atom of the amylose chain as obtained from the all modes model and

si,Reduced is the rms magnitude of ith atom as determined from the reduced order model.

Fig. 7 shows the total rms error vs. included eigenmodes number for A0/r = 0.1 and for different excita-

tion frequencies, x = 0.15 and 1.056 PHz. For x = 0.15 PHz, when more than ten (10) modes are included,

the response is accurate and the total rms error is of less than 5%. For x = 1.056 PHz, when more than

eighteen (18) modes are included, the total rms error is less than 1%. Note moreover that when only the

resonant mode (x = x18) is included, the total rms error is also less than 1%.

4.2. Constructing the ROM/POD

In the dynamic analysis of ROM/POD, a key point is how to create a data matrix, Q̂. For the present

study, two kinds of excitations are considered. One uses a sine-sweep excitation and the other uses a modal-

ramp excitation. The results are as follows.



(a) (b)

(c)

Fig. 6. Dynamic responses of the sixth oxygen atom for A0 = 1 Å, x = 1.056 PHz: (a) x-response, (b) y-response and (c) z-response.

Fig. 7. Total rms error vs. total number of eigenmodes retained in the reduced order model for A0 = 1 Å, x = 0.15 and 1.056 PHz.
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4.2.1. A ROM/POD from sine-sweep excitation

For this excitation, we assume that
BðtÞ ¼ A0 sin xlow þ ðxup � xlowÞt
2T

� �
t

and T = 100 ps, A0 = 1 Å.

For one excitation, we choose xlow = 0 and xup = 1 PHz and we call this ‘‘sine-sweep 1’’. For another

excitation, we choose xlow = 0.5 and xup = 2 PHz and we call this ‘‘sine-sweep 2’’.
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Fig. 8(a) shows the sine-sweep excitation force time history and Fig. 8(b) shows the response time history

of the sixth oxygen atom for ‘‘sine-sweep 1’’. Fig. 9(a) shows the sine-sweep excitation force time history

and Fig. 9(b) shows the response time history of the sixth oxygen atom for ‘‘sine-sweep 2’’. To form a data

matrix, Q̂, we consider 500 time steps at equal time intervals 0.05 ps for each dynamic variable (a total of

630 variables or degrees of freedom).
The eigenvalues of the correlation matrix for the POD model are shown in Fig. 10. The total number of

POD eigenvalues is 500. Both for sine-sweep 1 and sine-sweep 2, only a few modes (about the first 15 POD

modes) are significant out of the total of 500 POD modes.

Fig. 11 shows a typical dynamic response of the rms deflection magnitude of each carbon atom (a) and

oxygen atom (b) of the amylose chain using the ROM/POD with sine-sweep excitation and, for reference,

the response determined from the original linear equations, i.e., the exact solution for x = 0.15 PHz. The

agreement between the original and POD reduced order model using ten (10) POD modes is very good and

reasonably good even when only five (5) modes is included. However, the agreement deteriorates when less
than two (2) modes are included.

Fig. 12 shows the results for x = 1.056 PHz. The agreement is very good when more than four (4) POD

modes are included. When less than three (3) POD modes are included, the results are no longer acceptable.

Fig. 13 shows the total rms error vs. included POD mode number for the two different excitation fre-

quencies, x = 0.15 and 1.056 PHz. For x = 0.15 PHz, when more than six (6) modes are included, the re-

sponse is accurate and the total rms error is of less than 5%. For x = 1.056 PHz, when more than five (5)

modes are included, the total rms error is less than 5%. However, when less than five (5) modes are in-

cluded, the total rms error sharply increases.

4.2.2. ROM/POD from modal-ramp excitation

In the linear equations, Eq. (6), we assume that
fBðtÞg ¼ f/ig;

where /i is ith normal modal vector.

For one excitation, we take i = 1 to 5, i.e., the first five normal modal vectors are included in the data
matrix, Q̂, that we call ‘‘ramp case 1’’, and for another excitation, we take i = 16 to 20, i.e., there are five

normal modal vectors from /16 to /20 included in the data matrix, Q̂, that we call ‘‘ramp case 2’’.

Fig. 14(a) shows a typical x-response of the sixth oxygen atom for the first two ramp mode excitations;

and Fig. 14(b) shows the x-response for the other ramp mode excitations for ‘‘ramp case 1’’. To form a data

matrix, Q̂, we consider 100 time steps per each ramp mode at time intervals of 300 ps for each variable. The

size of the data matrix, Q̂, is 630 · 500. Similar results are obtained for ‘‘ramp case 2’’.
(a) (b)

Fig. 8. Sine-sweep 1 excitation and response: (a) sine-sweep excitation force and (b) sine-sweep response.



(a) (b)

Fig. 9. Sine-sweep 2 excitation and response: (a) sine-sweep excitation force and (b) sine-sweep response.

Fig. 10. POD eigenvalue vs number of POD mode.



(a) (b)

Fig. 12. Dynamic responses of the amylose chain for A0 = 1 Å, x = 1.056 PHz, using a linear ROM/POD approach with sine-sweep 2

excitation: (a) Rms magnitude of each carbon atom and (b) rms magnitude of each oxygen atom.

Fig. 13. Total rms error vs. total number of POD modes retained in the ROM/POD approach with sine-sweep excitation for A0 = 1 Å,

x = 0.15 and 1.056 PHz.

(a) (b)

Fig. 14. Dynamic response to the modal ramp excitation, ramp case 1: (a) ramp mode #1, #2; (b) ramp mode #3–#5.
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The eigenvalues of the correlation matrix for the PODmodel are shown in Fig. 15 for both ‘‘ramp case 1’’

and ‘‘ramp case 2’’. Again it is found that only a few POD modes are important.

Fig. 16 shows a typical dynamic response of the rms deflection magnitude of each carbon atom (a) and

oxygen atom (b) of the amylose chain using the ROM/POD with modal ramp excitation and, for reference,
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the response determined from the original linear equations, i.e., the exact solution for x = 0.15 PHz. The

agreement between the original and POD reduced order model using twenty (20) POD modes is very good

and reasonably good when only ten (10) modes is included. However, the agreement is no longer acceptable

when less than four (4) modes are included.

Fig. 17 shows the results for x = 1.056 PHz. The agreement is very good when more than ten (10) POD
modes are retained. When less than nine (9) POD modes are used, the results are no longer acceptable.

Fig. 18 shows the total rms error vs. included POD mode number for different excitation frequencies,

x = 0.15 and 1.056 PHz. For x = 0.15 PHz, when more than twenty (20) POD modes are included, the re-

sponse is accurate and the total rms error is of less than 5%. The agreement is reasonably good when more

than ten (10) POD modes are included. For x = 1.056 PHz, when more than twenty (20) POD modes are

included, the total rms error is less than 5%. The agreement is reasonably good when more than nine (9)

POD modes are included. However, when less than five (9) modes are included, the total rms error is no

longer acceptable.
For the present linear system, the computational efficiency of the ROM/POD using sine-sweep excitation

is better than that of the ROM/POD using modal ramp excitation.

4.3. Evaluation of the linearized perturbation approach

Before turning to the discussion of the nonlinear numerical results obtained from ROM/POD, a numer-

ical evaluation of the linearized perturbation approach is made. The original nonlinear equation (4) and the

linearized perturbation equation (6) are used to calculate the dynamic responses. The excitation frequency
is taken as x = 0.15 PHz and four typical excitation amplitudes are considered. These are A0 = 1, 4, 10 Å

and A0 = 20 Å.

Fig. 19 shows the time histories of the sixth oxygen atom in x-direction obtained from the nonlinear

equations and also the linearized perturbation equations for an excitation amplitude of A0 = 1 Å. The

two time histories are very close but not identical. The dynamic responses of each atom are also very close

(the plot of rms magnitude of each atom is not shown). The results from the linearized perturbation ap-

proach are very good.

Fig. 20 shows the time histories of the sixth oxygen atom in x-direction and the rms response magnitude
of each atom for an excitation amplitude of A0 = 4 Å. The agreement between the two results is reasonably

good. The total rms error is 4.5%. The perturbation results are acceptable.
Fig. 15. POD eigenvalue vs. number of POD mode for both ramp case 1 and ramp case 2.



Fig. 21 shows the time histories of the sixth oxygen atom in x-direction and the rms response magnitude

of each atom for an excitation amplitude of A0 = 10 Å. The agreement between the two results is not good.

The total error is 27.3%. The nonlinear response is a periodic motion with some high harmonic compo-

nents. The perturbation results are unacceptable.

When the excitation amplitude is A0 = 20 Å, the dynamic response motion has chaotic behavior as

shown in Fig. 22, the time history (a) and phase plane plot (b). The response amplitude becomes large

and the static equilibrium position has been changed. Fig. 23 shows the comparison between the linearized

and nonlinear results for the time histories obtained from last 50 (fs) of Fig. 22(a). The perturbation ap-
proach is no longer accurate when the excitation amplitude is large.

Summarizing the above results, the rms error of the perturbation solution relative to the nonlinear solu-

tion is shown in Fig. 24. Note the results are shown only for periodic dynamic response, i.e., the chaotic

response for the larger excitation amplitudes is not considered. As shown in this figure, only when the

excitation amplitudes are less than 4 Å, is the total rms error less than 5%. Because the polysaccharides



Fig. 18. Total rms error vs. total number of POD modes retained in the ROM/POD approach with modal ramp excitation for A0 = 1

Å, x = 0.15 and 1.056 PHz.

Fig. 19. Linearized and nonlinear time histories for the amplitude A0 = 1 Å.
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molecule is a complex nonlinear system, the perturbation approach is appropriate only for the smaller exci-

tation amplitude range.

4.4. Nonlinear results obtained from ROM/POD

The dynamic responses obtained from the nonlinear POD reduced order model are based on the linea-

rized response correction using Eq. (31). The linearized response qlinear is calculated from the dynamic per-

turbation equations of Eqs. (24)–(27). As described in Section 4.3 and Section 4.2, for sufficiently small
dynamic response the perturbation approach and corresponding reduced order model is quite accurate.

In the present nonlinear analysis, a typical example is considered. The excitation frequency is x = 0.15

PHz and the excitation amplitude is A0 = 10 Å. The POD eigenmodes are obtained from the perturbation

equation and a sine-sweep force excitation as shown in Fig. 8.

Fig. 25 shows the steady time histories of the sixth oxygen atom in x-direction for different POD modes

retained. When 35 POD modes are retained, the dynamic response is very close to the exact nonlinear solu-

tion. Note that there is a phase difference due to different initial conditions. When 20 POD modes are re-

tained, the agreement between the ROM/POD and the exact nonlinear solutions is still good but there is a



(a) (b)

(c)

Fig. 20. Linearized and nonlinear dynamic responses for an excitation amplitude of A0 = 4 Å: (a) time history along the x-axis, (b) rms

magnitude of each carbon atom and (c) rms magnitude of each oxygen atom.
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discernible difference. When four POD modes are retained, there is a large error between the ROM/POD

and the exact nonlinear solutions (not shown in Fig. 25). This is because the linearized response qlinear for 4

POD modes retained is very poor as shown in Fig. 16. To obtain an accurate nonlinear ROM/POD result,

an accurate linearized response, qlinear is required.

Fig. 26 shows the rms response magnitude of each carbon and oxygen atoms for 35, 12 and 6 POD

modes retained. For comparison, the exact solution obtained from the nonlinear equation (3) is also plotted

in this figure as shown in the solid line. It is found that the agreement is excellent when thirty five (35) POD

modes are retained, reasonably good when twelve (12) POD modes are retained and unacceptable when
only six (6) POD modes are retained.

Fig. 27 shows the total rms error vs. included POD mode number. When more than twenty five (25)

POD modes are included, the response is accurate and the total rms error is less than 5%. The agreement

is reasonably good when more than twenty (12) POD modes are included and total rms error is less than

10%. The results are unacceptable when less than ten (10) POD modes are included.

Using the present nonlinear POD reduced order model method, the total CPU time is reduced but not

greatly, e.g., the reduction in CPU time is about 39% of total CPU time when 35 POD modes are retained

and about 46% when 12 POD modes are retained. This relatively modest reduction in CPU time (by the



( a ) ( b )

( c ) Fig. 21. Linearized and nonlinear dynamic responsesfor an excitation amplitude ofA0= 1 0 A

˚ : (a) time history along the

x-axis, (b)

rms magnitude ofeach carbon atom and (c)rms magnitude ofeach oxygen atom.

(a)

7 4 4 D 0 T a n g e t a l 0 / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 0 1 ( 2 0 0 4 ) 7 2 3 – 7 5 2
usual POD standards) is because we still use the original variables, q(t), in Eq. (19) to calculate the nonlin-

ear forces, {FN}, at each time step and the computational cost for {FN} occupies most of the CPU time in

the total computational time. Thus the present method needs improvement. An important improvement

would be to find an analytical relationship for the matrix of the nonlinear forces in terms of the reduced
order variables, a(t). Although, such a relationship matrix may be large and complex, it only needs to cre-
(b)Fig. 220 Linearized and nonlinear dynamic responses for an excitation amplitude ofA0= 2 0 A ˚ : ( a ) t i m e h i s t o r y a l o n g t h e x - a x i s a n d ( b ) p h a s e p l a n p l o t .



Fig. 23. Linearized and nonlinear time histories for an amplitude of A0 = 20 Å.

Fig. 24. Total rms error of the linearized perturbation solution relative to the nonlinear solution vs. the excitation amplitude.

Fig. 25. Time histories for several POD modes retained for the excitation frequency is x = 0.15 PHz and the excitation amplitude is

A0 = 10 Å.

D. Tang et al. / Journal of Computational Physics 201 (2004) 723–752 745



 
 

(a)
  

(b)

Fig. 26. Dynamic responses of the amylose chain for various numbers of POD modes retained for A0 = 10 Å, x = 0.15 PHz, using a

nonlinear ROM/POD approach: (a) rms magnitude of each carbon atom and (b) rms magnitude of each oxygen atom.

Fig. 27. Total rms error vs total number of POD modes retained in the nonlinear ROM/POD approach.
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ated once. Such an improvement would greatly decrease the numerical integration time. Such work is in

progress.
5. Concluding remarks

Reduced order dynamic modeling using global POD modes is shown to be an effective dynamic compu-
tational approach for both small (using linearized perturbation approach and POD reduced order model)

and large (using nonlinear POD reduced order model) motions of a polysaccharides molecular chain struc-

ture. However, the nonlinear POD reduced order model method needs improvement to further decrease the

computational time.
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Appendix A. Nonlinear forces and linearized stiffness

A.1. Bond stretching force

Assume the bond is between atom A and atom B. The force due to the stretching potential is:
Fi
f P
si ¼ � oEs

oqPi
¼ �

X
2kbðb� b0Þ

ob
oqPi

: ðA:1Þ
The linearized stiffness about the static equilibrium position is
K
s

ij ¼
of P

si

oqQj
¼ �

X
2kbðb� b0Þ

o
2b

oqPi oq
Q
j

þ 2kb
ob
oqPi

ob

oqQj

" #
; ðA:2Þ
where
ob
oqPi

¼ 1

2b
oðAB � ABÞ

oqPi
¼ 1

b
ðdAP � dBP Þ qAi � qBi

� �
;

o
2b

oqPi oq
Q
j

¼ 1

b
dijðdAP � dBP ÞðdAQ � dBQÞ �

ob
oqPi

ob

oqQj

" #
and d is a Delta function, for example, dij ” 0 when i 6¼ j.

A.2. Bending angle force

Consider the angle formed by atoms A, B and C as an example. See Fig. 28 for the diagram of the angle.
cos h ¼ BC � BA
jBCj � jBAj �

~N
~D
;

g. 28. Schematic diagram of the bonds, bond angles and dihedral angle in a portion of a single glucopyranose molecule.
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o~N
oqPi

¼ oðBC � BAÞ
oqPi

¼ ðqBi � qCi ÞðdBP � dAP Þ þ ðdBP � dCP ÞðqBi � qAi Þ;

o2 ~N

oqPi oq
Q
j

¼ dij½ðdBQ � dCQÞðdBP � dAP Þ þ ðdBP � dCP ÞðdBQ � dAQÞ�:
Define D ¼ ~D
2

o~D
oqPi

¼ 1

2~D

oD
oqPi

¼ 1

~D
½ðBA � BAÞðqBi � qCi ÞðdBP � dCP Þ þ ðBC � BCÞðdBP � dAP ÞðqBi � qAi Þ�;

o2 ~D

oqPi oq
Q
j

¼ 1

2~D

o2D

oqPi oq
Q
j

� 1

~D

o~D
oqPi

o~D

oqQj
;

where
o
2D

oqPi oq
Q
j

¼ 2½dijðBA � BAÞðdBQ � dCQÞðdBP � dCP Þ þ dijðBC � BCÞðdBQ � dAQÞðdBP � dAP Þ

þ 2ðqBj � qAj ÞðdBQ � dAQÞðqBi � qCi ÞðdBP � dCP Þ þ 2ðqBj � qCj ÞðdBQ � dCQÞðqBi � qAi ÞðdBP � dAP Þ�;

o cos h
oqPi

¼ 1

~D

o~N
oqPi

� cos h
o~D
oqPi

	 

;
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oqPi oq
Q
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¼ 1

~D
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oqPi oq
Q
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� cos h
o2 ~D

oqPi oq
Q
j

� o~D
oqPi

o cos h
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� o~D
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oqPi

" #
:

The force due to the bond angle potential is
f P
hi ¼ � oEh

oqPi
¼ �

X
2khðh� h0Þ � � 1

sin h

� �
o cos h
oqPi

: ðA:3Þ
The linearized stiffness about the static equilibrium position is
K
h
ij ¼

of P
hi

oqQj
¼�

X
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sinh

� �
o2 cosh
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Q
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o cosh
oqPi
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oqQj

" #
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sinh

	 
( )
:

ðA:4Þ
A.3. Torsional angle force

In the simulation, here all d are zero so the torsional potential can be rewritten as:
E/ ¼
X

½k/1ð1þ cos/Þ þ k/2ð1þ cos 2/Þ þ k/3ð1þ cos 3/Þ�

¼
X

½k/1ð1þ cos/Þ þ 2k/2cos2/þ k/3ð1þ 4 cos/3 � 3 cos/Þ�;

cos/ ¼
~N
~D
;
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where
~N ¼ðAB� BCÞ � ðBC � CDÞ
¼ðAB � BCÞðBC � CDÞ � ðAB � CDÞðBC � BCÞ
and
~D ¼ jAB� BCj � jBC � CDj:

The first and second derivatives of ~N are
o~N
oqPi

¼ ½ðqBi � qCi ÞðdCP � dDP Þ þ ðdBP � dCP ÞðqCi � qDi Þ�ðAB � BCÞ

� ½ðqAi � qBi ÞðdCP � dDP Þ þ ðdAP � dBP ÞðqCi � qDi Þ�ðBC � BCÞ

þ ½ðqAi � qBi ÞðdBP � dCP Þ þ ðdAP � dBP ÞðqBi � qCi Þ�ðBC � CDÞ

� 2ðAB � CDÞðqBi � qCi ÞðdBP � dCP Þ;

o2 ~N

oqPi oq
Q
j

¼ dij½ðdBQ � dCQÞðdCP � dDP Þ þ ðdBP � dCP ÞðdCQ � dDQÞ�ðAB � BCÞ

� dij½ðdAQ � dBQÞðdCP � dDP Þ þ ðdAP � dBP ÞðdCQ � dDQÞ�ðBC � BCÞ

þ dij½ðdAQ � dBQÞðdBP � dCP Þ þ ðdAP � dBP ÞðdBQ � dCQÞ�ðBC � CDÞ

� 2dij½ðdBQ � dCQÞðdBP � dCP ÞðAB � CDÞ

þ ½ðqBi � qCi ÞðdCP � dDP Þ þ ðdBP � dCP ÞðqCi � qDi Þ� � ½ðqAj � qBj ÞðdBQ � dCQÞ

þ ðdAQ � dBQÞðqBj � qCj Þ� � 2½ðqAi � qBi ÞðdCP � dDP Þ

þ ðdAP � dBP ÞðqCi � qDi Þ�ðqBj � qCj ÞðdBQ � dCQÞ

þ ½ðqAi � qBi ÞðdBP � dCP Þ þ ðdAP � dBP ÞðqBi � qCi Þ� � ½ðqBj � qCj ÞðdCQ � dDQÞ

þ ðdBQ � dCQÞðqCj � qDj Þ�

� 2ðqBi � qCi ÞðdBP � dCP Þ½ðqAj � qBj ÞðdCQ � dDQÞ þ ðdAQ � dBQÞðqCj � qDj Þ�:
Define
D ¼ ~D
2 ¼ D1D2;
where
D2 ¼ jAB� BCj2 ¼ ðAB � ABÞðBC � BCÞ � ðAB � BCÞ2
and
D1 ¼ jBC � CDj2 ¼ ðBC � BCÞðCD � CDÞ � ðBC � CDÞ2;

oD1

oqPi
¼ 2fðqAi � qBi ÞðdAP � dBP ÞðBC � BCÞ þ ðqBi � qCi ÞðdBP � dCP ÞðAB � ABÞ

� ½ðqAi � qBi ÞðdBP � dCP Þ þ ðdAP � dBP ÞðqBi � qCi Þ�ðAB � BCÞg;
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o2D1

oqPi oq
Q
j

¼ 2dij½ðdAQ � dBQÞðdAP � dBP ÞðBC � BCÞ þ ðdBQ � dCQÞðdBP � dCP ÞðAB � ABÞ�

� 2dij½ðdAQ � dBQÞðdBP � dCP Þ þ ðdAP � dBP ÞðdBQ � dCQÞ�ðAB � BCÞ

þ 4ðqAi � qBi ÞðdAP � dBP ÞðqBj � qCj ÞðdBQ � dCQÞ þ 4ðqAj � qBj ÞðdAQ � dBQÞðqBi � qCi ÞðdBP � dCP Þ

� 2½ðqAj � qBj ÞðdBQ � dCQÞ þ ðdAQ � dBQÞðqBj � qCj Þ� � ½ðqAi � qBi ÞðdBP � dCP Þ

þ ðdAP � dBP ÞðqBi � qCi Þ�:

oD2

oqPi
¼ 2fðqBi � qCi ÞðdBP � dCP ÞðCD � CDÞ þ ðqCi � qDi ÞðdCP � dDP ÞðBC � BCÞ

� ½ðqBi � qCi ÞðdCP � dDP Þ þ ðdBP � dCP ÞðqCi � qDi Þ�ðBC � CDÞg;

o
2D2

oqPi oq
Q
j

¼ 2dij½ðdBQ � dCQÞðdBP � dCP ÞðCD � CDÞ þ ðdCQ � dDQÞðdCP � dDP ÞðBC � BCÞ�

� 2dij½ðdBQ � dCQÞðdCP � dDP Þ þ ðdBP � dCP ÞðdCQ � dDQÞ�ðBC � CDÞ

þ 4ðqBi � qCi ÞðdBP � dCP ÞðqCj � qDj ÞðdCQ � dDQÞ þ 4ðqBj � qCj ÞðdBQ � dCQÞðqCi � qDi ÞðdCP � dDP Þ

� 2½ðqBj � qCj ÞðdCQ � dDQÞ þ ðdBQ � dCQÞðqCj � qDj Þ� � ½ðqBi � qCi ÞðdCP � dDP Þ

þ ðdBP � dCP ÞðqCi � qDi Þ�;

oD
oqPi

¼ D1

oD2

oqPi
þ D2

oD1

oqPi
;

o2D

oqPi oq
Q
j

¼ oD1

oqPi

oD2

oqQj
þ oD1

oqQj

oD2

oqPi
þ D2

o2D1

oqPi oq
Q
j

þ D1

o2D2

oqPi oq
Q
j

;

o~D
oqPi

¼ 1

2~D

oD
oqPi

;

o2 ~D

oqPi oq
Q
j

¼ 1

2~D

o2D

oqPi oq
Q
j

� 1

~D

o~D
oqPi

o~D

oqQj
;

o cos/
oqPi

¼ 1

~D

o~N
oqPi

� cos/
o~D
oqPi

	 

;

o
2 cos/

oqPi oq
Q
j

¼ 1

~D

o
2 ~N

oqPi oq
Q
j

� cos/
o
2 ~D

oqPi oq
Q
j

� o~D
oqPi

o cos/

oqQj
� o~D

oqQj

o cos/
oqPi

" #
:

The force due to the torsional potential is:
f P
/i ¼ � oE/

oqPi
¼ �

X
½k/1 þ 4k/2 cos/þ k/3ð12cos2/� 3Þ� o cos/

oqPi
: ðA:5Þ
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The linearized stiffness about the static equilibrium position is
K
/
ij ¼

of P
/i

oqQj

¼ �
X

½k/1 þ 4k/2 cos/þ k/3ð12cos2/� 3Þ� o
2 cos/

oqPi oq
Q
j

þ 4ðk/2 þ 6k/3 cos/Þ
o cos/
oqPi

o cos/

oqQj

( )
:

ðA:6Þ
A.4. Non-bonded forces

Assume the interaction is between atom C and atom D. The force due to the van der Waals potential is
f P
i ¼ � oEvdw

oqPi
¼ �

X
�12

ACD

r13ij
þ 6

BCD

r7CD

" #
orCD
oqPi

: ðA:7Þ
The linearized stiffness about the static equilibrium position is
K
vdw

ij ¼ of P
vdwi

oqQj
¼ �

X
�12

ACD

r13CD
þ 6

BCD

r7CD

	 

o2rCD
oqPi oq

Q
j

þ 156
ACD

r14CD
� 42

BCD

r8CD

	 

orCD
oqPi

orCD
oqQj

( )
: ðA:8Þ
The force due to the Coulomb potential is
f P
ei ¼ � oEel

oqPi
¼ �

X
C 6¼D

�kcoul
qCqD
�r2CD

� �
orCD
oqPi

: ðA:9Þ
The linearized stiffness about the static equilibrium position is
K
el

ij ¼
of P

ei

oqQj
¼ �

X
CD

�kcoul
qCqD
�r2CD

� �
o
2rCD

oqPi oq
Q
j

þ 2kcoul
qCqD
�r3CD

� �
orCD
oqPi

orCD
oqQj

( )
; ðA:10Þ
where
orCD
oqPi

¼ 1

2rCD

oCD � CD
oqPi

¼ 1

rCD
ðdCP � dDP ðqCi � qDi ÞÞ
and
o2rCD
oqPi oq

Q
j

¼ 1

rCD
dijðdCP � dDP ÞðdCQ � dDQÞ �

orCD
oqPi

orCD
oqQj

" #
:
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